
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 6, June (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 53

Dealing with Mobile Ad-Hoc Networks with

Optimized Permission Based Mutual Exclusion

Algorithm

Sanjida Singhani

Department of CSE CU Gharuan, India.

Vikas Wasson

Asst Prof CSE CU Gharuan, India.

Abstract –The paper presents a proposal for the optimized total

number of messages exchanged in permission based algorithm.

In order to achieve it, a new message known as Hold message has

been used. Additionally, a timestamp priority has been utilized in

order to reduce the number of sites to which hold message is

sent. With this, the parameter, t*n, will get optimized reducing

the total number of messages exchanged in the proposed

algorithm. The paper also aims at discussing the correctness

proofs for static analysis of the algorithm. Umpteen DME

protocols have been designed and implemented in order to

achieve the optimization of various DME parameters, viz.,

liveness, fairness, message complexity and safety. Most of the

previous approaches lacked message complexity to which our

proposal suggests to achieve optimized total number of

exchanged messages.

Index Terms – Distributed Mutual Exclusion, Mobile ad-hoc

network, Critical section, Message complexity

1. INTRODUCTION

A Mobile Ad hoc network (MANET) is characterized by self

configuring infrastructureless networks of mobile devices

linked via wireless channel [1]. Based on this feature, it is

also termed as an autonomous system of mobile nodes and

associated hosts which collectively form an arbitrary and

dynamic topology [2]. Basically, processes must share

common hardware or software resources that assist each other

to work independently at large scale, in distributed mobile ad-

hoc networks [3]. Further, the access to a shared resource

must be synchronized on account to make certain that, at any

given time, only one process employs the live and available

resources. Each process has a code segment, critical section

(CS), meant for accessing the shared resource [1]. Hence;

managing and coordinating the execution of critical section is

a big issue, needs concern, in ad-hoc networks. By utilizing a

finite-time mutually exclusive access, by the CS, this issue can

be resolved. In addition, each node must request permission to

enter its CS and release the same after exiting.

The existing literature describes, two main approaches that

have been proposed for solving the DME problem, namely,

centralized and distributed [2, 3]. In the former approach, one

node is selected to act as a central coordinator. Further, this

node is made fully responsible for storing the complete

information of incoming requests coupled with the

information of available resources in order to make the best

use of the shared resource.

On the other hand, in later approach, the decision-making is

spanned over the entire system. To accomplish the task of

achieving DME using distributed approach, the two principles

as follows:

 Token- based algorithms named so because of the

presence of token in the system

 Permission-based algorithm attributed so because of the

collection of permission from nodes in the system.

1.1Token-bsased Approach

In token-based approach, there are two methods of using

token for entering into CS. The first method states that only

one process can enter CS by using a special object called

token, which is unique to the whole system. Here, token acts

as a privilege to that process for entering the CS [2].A

process, the current owner of the token, selects the next token

owner by making use of priority as the base for selection

criteria. In a particular scenario where no process wants to

enter the CS, then the token is held by the current process

itself.

On the other side; the second method that has been followed

suggests that the processes are logically arranged and

organized in a specific ring topology where the token is

circulated from one process to another, providing them access

to enter into the CS [2]. After it exits from its CS, the token is

released for further circulation. However, in a case where the

process is not interested to enter CS then it passes the token to

the next node in the logical ring. Also, Starvation Freedom is

guaranteed if the ring is unidirectional.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 6, June (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 54

1.2 Permission-based approach

In the permission-based approach, the process can be allowed

to enter CS only by explicitly acquiring permission from a set

of nodes or from all nodes, in the system. There is no

requirement of token, therefore attributed as non token based-

approach. A priority in the form of logical clocks or

timestamps can be established for incoming requests [3].

When a node completes its execution and exits from CS, it

informs all other nodes from which it had received

permission. Permission-based approach is further divided into

two types based on, i.e., voting and coterie [7]. In voting-

based approach, each node is assigned with a vote, in the

system itself. Therefore, a node that wants to execute CS, asks

for permission from those nodes that constitute the majority

of votes. On the flip side, algorithms that follow coterie-based

approach possess a coterie, collection of quorums (i.e., set of

nodes), is attached to the system. Therefore; a node must

obtain permission from each and every node of quorum

present in the coterie in order to access the CS [7]. Figure 1

(given below) describes the flow of mutual exclusion

algorithms.

 Figure 1: Flow diagram of DME approaches

The main objective of our proposed algorithm is the reduction

in total number of exchanged messages along with the new

message called Hold message. In addition, it ensures deadlock

freedom. The propose technique specifically works on the

reduction of number of sites to which a node has to send

“Hold” message by applying timestamp priority which will

further optimize the reduced flow of messages in the system

2. RELATED WORK

The first proposed solution for distributed permission-based

mutual exclusion problem by Lamport in 1978, popularly

known as Lamport’s algorithm, used three categories of

messages: request, reply and release. In order to serve the

request messages, it uses the concept of logical clocks and

assigns sequence numbers to the incoming request i.e.,

timestamp [4]. Thereafter, every node maintains a queue of

pending requests for entering into the CS. A node, ni , when

wants to execute CS, a message is broadcasted to all other

nodes and its corresponding request is stored in a local queue.

Further, upon receiving the request message from ni and after

storing the message in its own queue, node nj , sends back a

timestamped reply message. However, ni can access CS only

when two conditions are met: First, the received reply

messages from all other processes must have timestamps

greater than its own timestamped request. Second, the nodes’

own request must be kept at the front of its queue. A release

message broadcast is followed by the exit of ni from the CS.

Therefore; the message complexity of this algorithm is 3(N-

1). Ricart and Agrawala (RA) improved Lamport’s solution

by reducing message complexity from 3(N-1) to 2(N-1). This

algorithm utilises two messages, request and reply, thereby,

avoiding the release messages [5]. In case, each node, either

in CS or requesting CS, has a higher priority request, would

not send the reply messages. A node enters CS only after

receiving permission from all nodes and upon exiting the CS,

it sends all reply messages that have been deferred.

Maekawa's algorithm introduced the concept of coterie by

associating each node with a set of nodes. In its design, there

is always a node in the intersection of two subsets [7]. A node

ni must obtain permission from all other nodes in its home set,

Si, before it can enter its CS. After exiting CS, it replies to

node at the top of requesting queue instead of sending

message to all nodes in the queue. The number of messages

required to handle a request is 3 times the size of the request

set [7]. For a system with N nodes, the size of each request set

is roughly square root of N, therefore, total message

complexity is 3√N.The authors, Mukesh Singhal and D.

Manivannan Singhal in 1997, conceptualized a “look-ahead”

technique for especially infrastructured networks in mobile

environment so as to handle DME. The technique, rather than

enforcing mutual exclusion among all the nodes of a mobile

system, enforced it only among those nodes concurrently

competing for CS [9]. Reduction in message overhead was the

ramification. Further, “look-ahead” mutual exclusion

algorithms eliminates unnecessary communication among

sites, hence are more efficient. This technique resulted in

message complexity proportional to average number of active

sites at any time instead of the total number of sites in the

system.The paper by Weigang Wu, Jiannong Cao, Jin Yang in

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 6, June (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 55

2005presented the first permission-based solution exclusively

for DME problem in MANETs. However, it uses "look-

ahead" technique, presented by M. Singhal [10] (for

infrastructured mobile networks). The proposed protocol has

reduced message complexity in MANET environment. Also,

the authors presented timeout mechanism to deal with

MANET susceptibility to link and host failures. It provides

better performance under high load situations, i.e., when more

mobile hosts are active. Furthermore, the paper describes a

conventional method for fault tolerance in MANETS [9]. The

paper by Moharram Challenger, Peyman Bayat and M.R.

Meybodi in 2006 provided proposal for an asynchronous

message passing algorithm for distributed system. In their

work, notable improvements on the number of messages

exchanged are made. To exemplify, a process Pi on finishing

CS sends a special message, FLUSH message was sent to

both, concurrently requesting process and the next highest

priority request, whose requests were not answered earlier

[11]. After examining these requests, Pi can determine the

sequence of execution of these processes to execute CS.

Following this, the optimization is achieved. For an instance,

Pk is considered to be the highest priority among all request

messages. Then, Pi, other than replying to m nodes, can send

reply only to Pk apprising it of all the information that Pi has

collected. This leads to reduced message complexity [11],

hence, enhancing the performance of the system. Its message

complexity, per critical section access, fluctuates between (N-

1) and 2(N-1).The approach introduced by Murali

Parameswaran and Chittaranjan Hota in 2010, used a new

message called “Hold” on account toensure that the

requesting nodes are alert with information of the currently

executing CS node. It used an adaptable timeout mechanism

to tackle variant execution times with critical sections [13].

The paper discusses about an algorithm that can deal

situations where the CS executing node can fail, with the help

of the “Hold” message along with the adaptive timeout

method. It also informs about the expected time a node

remains in CS. Thus, it also resolves the issue that if a node

has crashed or executing a lengthy process. The major

drawback is the increased message complexity of the

algorithm with the introduction of new message “Hold”. The

improvement could be the reduction in the number of the sites

to which “Hold” has to be sent.

3. DRABACKS OF TOKEN AND PERMISSION BASED

APPROACHH

From the review of existing literature, the following

inferences have been drawn:

Token-based approach has the following drawbacks:

 This approach is highly susceptible to the loss of the

token. Consequently, a deadlock situation arises.

 Existence of duplicate tokens causes problem.

 For uniqueness of token, complex token regeneration

must be executed.

Permission-based approach has the following

drawbacks:

 Lamport’s algorithm suffered high message

overhead. Moreover, the algorithm does not handle

failures to make the system fault-tolerant.

 Ricart Agrawala proposed an improved version of

Lamport’s algorithm. However, it suffered from

single point of failure as well as incurs high message

complexity.

 In Maekawa algorithm, there is no defined order for

messages that are sent to the subset of nodes, which

in case of communication delay, leads to deadlock

situations.

 Communication delays are typical in a MANET

environment. To handle this, new algorithms were

proposed with new message like FLUSH and Hold.

Although, the protocols resolves deadlock problem,

however, they incurs increased message complexity.

4. MOTIVATION

The prime motivation of our proposed algorithm is to ensure

that there is less message traffic with the existence of new

message and at the same time guarantees deadlock freedom.

The proposed approach works on the reduction of number of

sites to which a node has to send “Hold” message by applying

timestamp priority. This will optimize the reduced flow of

messages in the system.

5. ARCHITECTURE MODEL AND ASSUMPTIONS

We assume a MANET comprising of N nodes (N0-N(n-1)), each

having unique identification number, Idno and a particular

timestamp value, T_csi (timestamp value of ith node to retain

the critical section). Further, the mobile nodes forming

dynamic topology communicate with each other as well as

access the shared resource in a wireless channel through

asynchronous message exchanges. Moreover, only one

process accesses the available shared resource.

Therefore, the requesting nodes are notified about the exit

time of the current node, to access the critical section. This

will also ensure that the current node in the CS has not

arbitrarily failed or crashed. It has been presumed that Link

and Node failures are certain, however, information can be

recovered, either by resetting the values, or by using older set

of values. The system model imposes a finite time on the

access of CS by a particular node, thereby, maintain liveness

into the system.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 6, June (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 56

6. OVERVIEW OF ALGORITHM

6.1Data Structures Used

 Idno: A unique identification number of each node.

 REQ_que: A queue which is maintained by the

node in the CS to keep track of the Request

messages to access CS.

 HOLD_que: A queue which is maintained by the

node, currently in the CS, to keep the track of

number of nodes to send the “Hold” messages.

 T_req: A vector to keep track of the timeout values

of REQ messages.

 T_csi: A vector to keep track of time upto which a

node retains the CS.

 Tcs_exit: A vector to maintain the amount of time

left for current node to exit CS.

 Inft_set: An array maintained by each node to keep

track of nodes to send REQ message and seek

permission before entering CS.

6.2 Types of Messages Used

 Request for Critical section, REQ: A mobile node

when wants to access critical section, it will send

request, REQ, to all nodes in itsInft_set. However,

the nodes which are not demanding CS, will respond

to the requesting node by sending immediate Reply

or “Hold” message. Also, T_req is set, which gives

the estimate of round trip time between nodes.

 Reply message: When the nodes in the Inft_set gets

REQ, which contains identification number and

timestamp value. Nodes themselves check if they are

requesting for CS or not, then they send immediate

Reply message (if not requesting). After getting

Reply from all nodes in its Inft_set, it enters CS.

 Hold message: While the node is in the critical

section, if it gets REQ then it will send “Hold”

message which encloses Tcs_exit, which specifies

the amount of time left for it to exit the critical

section.

7. PROPOSED MODEL

In MANETs, suppose, there are many nodes that are

requesting for CS simultaneously, sending “Hold” message to

all by current node in CS becomes overhead. Therefore we

use the concept of low timestamp value here, the nodes with

low timestamp value in their REQ will be send “Hold”

message to notify the amount of time left by current node to

exit CS.

7.1Working of algorithm

In the mobile ad hoc environment, the working of proposed

algorithm is divided into two scenarios. In both the scenarios,

the commonalities are:

 We assume that there are four mobile nodes, N0,

N1,N2and N3 forming MANET.

 Each mobile node has its own identification number,

Idno.

 When a node wants to enter CS, it sends request to

other nodes and waits for their Reply, thereby using

them as permission (either “Hold” or Reply) to enter

into the CS.

7.2 Scenario1

Initially, we assume that there is no node in the CS and also,

Request queue, REQ_que is empty. Suppose, at some interval,

mobile node N0 wants to enter CS. It sends Request, REQ that

possess its identification number and timestamp value, to its

own Inft_set. All nodes in the Inft_set, if not interested in

accessing CS, will reply to the node N0 by sending Reply

message as permission to the node. After obtaining all

Replies, N0 enters into CS. The algorithm for entering into CS

is discussed below in the form of pseudo code given in table

1:

/ / mo b i l e n o d e N 0 wa n t s t o e n t e r C S

p r o c S e n d _ R E Q

B e g i n

{

S e t N 0 I d n o ;

SetN0 T_csi ; / /time to retain CS

f o r (N 1 , N 2 , … N n ɛ i n f o _ s e t 0)

{

S e n d R E Q (I d n o + T _ c s i) ;

S e t T _ r e q f o r e v e r y R E Q ;

If (N1, N2 ... Nn are not demanding CS)

{

S e n d “ R e p l y ” t o N 0 ; }

N 0 e n t e r s C S . }

}

E n d

Table1. Algorithm for requesting CS

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 6, June (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 57

7.3 Scenario2

In the second scenario, we have proposed an algorithm where

N0 is already in CS. Further, N2 and N3 want to access the CS

simultaneously. Nodes N2 and N3 will send REQ embedded

with the timestamps, to their corresponding Inft_sets. As N0 is

present in the Inft_set of both the nodes, timestamp priority is

used to break the symmetry of concurrent request messages.

Among the requesting nodes, the one with low timestamp,

T_cs ,will receive “Hold” message from N0 , shown in Fig2

Figure 2: Concurrent request from N2 and N3 while N0 in CS

Request message

 Reply message

 Hold message

Following table presents the pseudo code of the second

scenario:

// N0 in CS, N2 and N3 demands for CS

simultaneously

Begin

 Set N2 Idno + T_csi;

 Set N3 Idno + T_csi

 N2 send REQ (N0, N1, N3 ɛ info_set2);

N3 send REQ (N0, N1, N2 ɛ info_set3);

 If (N1 doesn’t demand CS)

 {

 Send “Reply message” ;

 }

else N2 and N3 waits;

 for (N0 in CS)

{

 Add N2 and N3 REQs to REQ_que of N0 ;

 Compare T_csi of all REQ (REQ_que);

 Send “Hold” message to low T_csi, N2 ;

 Set Tcs_exit; // for every “Hold” message//

Add N3 to “HOLD”_que;

}

N0 N0 exit CS;

 N2 enters CS;

}

End

Table 2: Algorithm for Hold Message

8. PROOF OF CORRCTNESS

The section discusses the proof of three properties Liveness,

Fairness and Safety, to ensure the correct working of the

proposed algorithm.

Theorem 1: With the help of “Reply” and “Hold” message,

the algorithm ensures fairness as well as determines the

waiting time.

Argument: Assume that a mobile node Nj wants to access

critical section while another node Ni is already executing CS.

Any site that belongs to the information set as well as

requesting CS simultaneously, receives either a Reply

message or a “Hold” message. The Reply messages are sent

immediately by the nodes which are not demanding CS

access. On the other side, the “Hold” message is sent by the

node Ni, currently in CS. This informs about the waiting time

to the requesting node. Further, if more than one process

request for CS at the same time, the decision of sending

“Hold” message is made on the basis of their timestamp

values. Also, it proves that only one process per node

executes the CS

Theorem 2: The algorithm ensures liveness.

Proof: Presuming a situation, when more than one node

requests for the CS access, simultaneously. Since, each

request in the proposed algorithm is timestamped, which is

already received by every node in the Inft_set. Therefore,

based on the timestamp priority, requesting node with lower

timestamp value will be sent a “Hold” message. Also, the

node is notified about its waiting time. This ensures CS

availability to all nodes and therefore, guarantees liveness of

the system.

Theorem 3: The algorithm ensures Safety.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 6, June (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 58

Proof: Without the loss of generality, frequent node/link

failures occur in dynamic MANET environment. This results

in the loss of messages. If the failed or crashed link/node is

not in Inft_set and is not waiting for Reply, then there will be

no effect on the execution. Whenever link/node failure occurs,

it will recover after retrying time period or resetting to the

older values. Thereafter, resuming to its normal functions, it

can participate in the network execution, thereby, ensuring

safety.

9. RESULTS

Result I: Comparison of Message Complexity

The Fig 3 shown below represents the comparison of the

number of Hold messages using the proposed technique

with the existing technique.

Figure 3 Hold messages exchanged with or without our

technique

The graph shows the number of Hold messages exchanged

among the requesting or contending nodes to execute CS. In

the existing protocol, the Hold message is send to all the

contending nodes by the node currently executing the CS.

Therefore, with the increased number of contending nodes,

the number of Hold message also increases linearly (blue

line). On the other side, using the proposed technique, the

number of Hold messages reduces by applying timestamp

priority. However, at times, there can be some nodes

requesting CS at the same time. In such cases, the Hold

message will be send to the node having lowest timestamp

value and rest of the requesting nodes will form the queue.

This, in turn, will substantially reduce the overhead of

sending Hold messages to all nodes (red line). The variation

reflected in the graph appears, in case, more than one node,

having same timestamp values, requests for the CS access. In

this situation, the Hold message is send to all nodes having

same timestamp values.

Result II: Bandwidth In Terms of Total Messages Exchanges

per CS entry

The Fig 16 shows the comparison between the Performance

of existing and proposed Technique. With Performance, we

refer to the total Bandwidth, i.e., Per CS entry and exit

operation, total number of messages exchanged.

Figure 4 Bandwidth of the System

We have analyzed our proposed algorithm for N = 5, 10, 15,

20, 25, 30. Here, N represents the number of sites competing

for mutual exclusion to enter CS. With increase in the

number of competing nodes, the number of messages

exchanged with each entry and exit is also observed to

increase. In general, the performance of a distributed mutual

exclusion algorithm is determined by the load of number of

message exchanges under heavy/ light load . The light load

refers to a situation where there is only one node in the critical

section and no pending/new request is there. On the other

side, when there is high demand for CS access, leading to

piling up of the requests, the system results in heavily

loaded situation. The obtained graph represents that there is

less flow of messages using proposed algorithm in

comparison with the existing. In addition, less message

overhead means improved performance.

Result III: Performance Under Light and Heavy Load

The Fig 5 shows the performance of our proposed

technique under light and heavy load i.e, lesser and higher

number of nodes requesting the critical section execution.

The graph represents varying nodes N and number of

messages exchanged per CS entry under load level 1 and

load level 50%.

The load level 1 is the ideal case where there is one node

at a time that requests for CS. Under load factor 50%

means half of the nodes in the info set requests for CS

access at the same time. This makes the resquest queue

heavily loaded. The graph shows that the increase in load

level will increase the number of messages exchanged per

critical section.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 6, June (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 59

Figure 5 No. of messages exchanged per CS vs. Load Factor

10. PERFROMANCE

In proposed algorithm, the message complexity will exceed

2(ᵠ-1) because of using additional “Hold” message. However,

the proposed algorithm reduces total number of “Hold”

messages when compared to [13]. The message complexity

will be [2(ᵠ-1) +t*n] where t is the timeout period and n is

number of nodes in HOLD_que. In the algorithm, we have

optimized the t*n parameter by reducing n factor and applying

timestamp priority, thereby, leading to controlled flow of

messages in the system.

11. CONCLUSION

Various solutions have been framed and can be found in the

literature for achieving DME using Token-based and

Permission-based approach. In Permission-based solutions,a

process that requests to access CS must receive permission

from all nodes in its information set by message exchanges.

However, the number of messages exchanges is large in the

existing literature. The proposed work focus on the reducing

the number of message exchanged including new message

“Hold”, thereby, optimizing t*n parameter. Further, this

reduces the overall latency, thus, increasing the performance

of the system.

REFERENCES

[1] B.D. Kshemkalyani and M. Singhal, Distributed mutual exclusion

algorithms in Distributed Computing Principles, Algorithms and
Systems, 1st ed. Cambridge University Press, May 2008.

[2] G. Coulouris, J.Dollimore, Tim Kindberg, Distributed System concept

and Design Addison-Wesley, Pearson Education, 2001.

[3] Tanenbaum, A.S., and Steen M.V, Distributed Systems Principles and

Paradigms, Prentice-Hall International, Inc, 2002.
[4] Lamport, L. “Time, clocks and the ordering of events in a distributed

system.,” Comm. A CM 21, pp 558-565, 7 July 1978.

[5] G.Ricart and A. K. Agrawala, “An Optimal Algorithm for Mutual
Exclusion in Computer Networks,” Communications of the ACM, pp

9-11, 1981.

[6] Maekawa, M., Oldehoeft, A.E., and Oldehoeft, R.R, Operating
Systems Advanced Concepts, Menlo Park, CA: Benjamin/Cumings,

pp:200-208, 1978.

[7] M Maekawa, “A √N algorithm for mutual exclusion in
decentralized systems,” ACM Trans on Computer Systems, Vol. 3, No

2, pp. 145-159, May 1985.

[8] M. Singhal, “A Taxonomy of Distributed Mutual Exclusion”, Journal of
Parallel and Distributed Computing 18(1), pp.94-101, 1993.

[9] M. Singhal, and D. Manivannan, “A Distributed Mutual Exclusion for

Mobile Environments”, Proc. IASTED Intl. Conf. on Intelligent

Systems, pp 557-561, 1997.

[10] Weigang Wu, Jiannong Cao, Jin Yang, “A Scalable Mutual Exclusion

Algorithm for Mobile Ad Hoc Networks,” Proc. of the 14th
International Conference on Computer Communications and Networks

(ICCCN2005), San Diego, USA, Oct. 17-19, 2005.
[11] Moharram Challenger, Peyman Bayat and M.R. Meybodi, “A Reliable

Optimization on Distributed Mutual Exclusion Algorithm”

TRIDENTCOM, 2006
[12] Bharath Kumar A.R. and Pradhan Bagur Umesh , “An Improved

Algorithm for Distributed Mutual Exclusion by Restricted Message

Exchange in Voting Districts” in11th International Conference on
Information Technology, 2008.

[13] Parameswaran, Murali; Hota, Chittaranjan, “A novel permission-based

reliable distributed mutual exclusion algorithm for MANETs,” Wireless
And Optical Communications Networks (WOCN), 2010 Seventh

International Conference On, vol., no., pp.1-6, 6-8 Sept. 2010.

[14] Parameswaran, M.; Hota, C., “Arbitration-based Reliable Distributed
Mutual Exclusion for Mobile Ad-hoc Networks”, Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks, 2013 11th

International Symposium and Workshops on, vol., no., pp.380-387,
May 13-17, 2013.

[15] K. Erciyes, “Distributed mutual exclusion algorithms on a ring of

clusters” ,Proc. of International Conference on Computational Science
and Its Applications ICCSA 2004, vol. 3045/2004, LNCS,

SpringerVerlag, May 2004, pp 518–527. doi: 10.1007/b98053.

[16] I. Suzuki and T. Kazami, “A distributed mutual exclusion algorithm,”
ACM Trans on Computer Systems, Vol.3, No.4, pp 344-349, Nov

1985.

[17] S. M. Masum, M. M. Akbar, A. A. Ali and M. A. Rahman, “A
consensus-based ℓ-Exclusion algorithm for mobile ad hoc networks,

” Ad Hoc Networks, Vol. 8, N o.1, pp. 30-45, 2009.

[18] J. E .Walter, J. L. Welch and N. H. Vaidya “A Mutual Exclusion
Algorithm for Ad Hoc Mobile Networks,” Wireless Networks,

Vol. 7(6), p. 585-600, 2001.

[19] K. Raymond, “A tree-based algorithm for distributed mutual
exclusion,” ACM Trans on Computer Systems,pp. 61-7, Feb. 1989

[20] B.Sharma, R. B. (2014). DMX in MANETs: majorresearch trends since

2004,” Proceedings of the InternationalConference on Advances in
Computing and Artificial Intelligence. ACM , pp.50-55.

[21] Shruti, P. S. (2015). Quorum-based Mutual Exclusion Algorithm

forMobile Ad-hoc Network (MANET). ICCCA .

http://www.awl-he.com/

